Part Number Hot Search : 
H4D19F N03RG A2201 VLMS20 YB1508 DS75LC 1C220 225M0
Product Description
Full Text Search
 

To Download HCNW4562 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1-385 h high bandwidth, analog/video optocouplers technical data features ? wide bandwidth [1] : 17 mhz (hcpl-4562) 9 mhz (HCNW4562) ? high voltage gain [1] : 2.0 (hcpl-4562) 3.0 (HCNW4562) ? low g v temperature coefficient: -0.3%/ c ? highly linear at low drive currents ? high-speed algaas emitter ? safety approval ul recognized - 2500 v rms for 1 minute (5000 v rms for 1 minute for hcpl- 4562#020 and HCNW4562) per ul 1577 csa approved vde 0884 approved -v iorm = 1414 v peak for HCNW4562 bsi certified (HCNW4562) ? available in 8-pin dip and widebody packages applications ? video isolation for the following standards/ formats: ntsc, pal, secam, s-vhs, analog rgb ? low drive current feedback element in switching power supplies, e.g., for isdn networks ? a/d converter signal isolation ? analog signal ground isolation ? high voltage insulation description the hcpl-4562 and HCNW4562 optocouplers provide wide band- width isolation for analog signals. they are ideal for video isolation when combined with their application circuit (figure 4). high linearity and low phase shift are achieved through an algaas led combined with a high speed detector. these single channel optocouplers are available in 8-pin dip and widebody package configurations. hcpl-4562 HCNW4562 caution: it is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by esd. functional diagram 7 1 2 3 4 5 6 8 nc anode cathode nc v cc v b v o gnd 5965-3579e
1-386 selection guide single channel packages 8-pin dip widebody (300 mil) (400 mil) hcpl-4562 HCNW4562 ordering information specify part number followed by option number (if desired). example: hcpl-4562#xxx 020 = ul 5000 v rms/1 minute option* 300 = gull wing surface mount option? 500 = tape and reel packaging option option data sheets are available. contact your hewlett-packard sales representative or authorized distributor for information. *for hcpl-4562 only. ?gull wing surface mount option applies to through hole parts only. schematic i f 8 6 5 gnd v cc 2 3 v o i cc v f i o anode cathode + 7 v b i b
1-387 package outline drawings 8-pin dip package (hcpl-4562) 8-pin dip package with gull wing surface mount option 300 (hcpl-4562) 0.635 ?0.25 (0.025 ?0.010) 12?nom. 9.65 ?0.25 (0.380 ?0.010) 0.635 ?0.130 (0.025 ?0.005) 7.62 ?0.25 (0.300 ?0.010) 5 6 7 8 4 3 2 1 9.65 ?0.25 (0.380 ?0.010) 6.350 ?0.25 (0.250 ?0.010) 1.016 (0.040) 1.194 (0.047) 1.194 (0.047) 1.778 (0.070) 9.398 (0.370) 9.906 (0.390) 4.826 (0.190) typ. 0.381 (0.015) 0.635 (0.025) pad location (for reference only) 1.080 ?0.320 (0.043 ?0.013) 4.19 (0.165) max. 1.780 (0.070) max. 1.19 (0.047) max. 2.54 (0.100) bsc dimensions in millimeters (inches). lead coplanarity = 0.10 mm (0.004 inches). 0.254 + 0.076 - 0.051 (0.010 + 0.003) - 0.002) 9.65 ?0.25 (0.380 ?0.010) 1.78 (0.070) max. 1.19 (0.047) max. hp xxxxz yyww date code 1.080 ?0.320 (0.043 ?0.013) 2.54 ?0.25 (0.100 ?0.010) 0.51 (0.020) min. 0.65 (0.025) max. 4.70 (0.185) max. 2.92 (0.115) min. dimensions in millimeters and (inches). 5 6 7 8 4 3 2 1 5?typ. option number* ul recognition ur 0.254 + 0.076 - 0.051 (0.010 + 0.003) - 0.002) 7.62 ?0.25 (0.300 ?0.010) 6.35 ?0.25 (0.250 ?0.010) * marking code letter for option numbers. "l" = option 020 "v" = option 060 option numbers 300 and 500 not marked. type number
1-388 8-pin widebody dip package (HCNW4562) 8-pin widebody dip package with gull wing surface mount option 300 (HCNW4562) 5 6 7 8 4 3 2 1 11.15 ?0.15 (0.442 ?0.006) 1.78 ?0.15 (0.070 ?0.006) 5.10 (0.201) max. 1.55 (0.061) max. 2.54 (0.100) typ. dimensions in millimeters (inches). 7?typ. 0.254 + 0.076 - 0.0051 (0.010 + 0.003) - 0.002) 11.00 (0.433) 9.00 ?0.15 (0.354 ?0.006) max. 10.16 (0.400) typ. hp hcnwxxxx yyww date code type number 0.51 (0.021) min. 0.40 (0.016) 0.56 (0.022) 3.10 (0.122) 3.90 (0.154) 1.00 ?0.15 (0.039 ?0.006) 7?nom. 12.30 ?0.30 (0.484 ?0.012) 0.75 ?0.25 (0.030 ?0.010) 11.00 (0.433) 5 6 7 8 4 3 2 1 11.15 ?0.15 (0.442 ?0.006) 9.00 ?0.15 (0.354 ?0.006) 1.3 (0.051) 12.30 ?0.30 (0.484 ?0.012) 6.15 (0.242) typ. 0.9 (0.035) pad location (for reference only) 1.78 ?0.15 (0.070 ?0.006) 4.00 (0.158) max. 1.55 (0.061) max. 2.54 (0.100) bsc dimensions in millimeters (inches). lead coplanarity = 0.10 mm (0.004 inches). 0.254 + 0.076 - 0.0051 (0.010 + 0.003) - 0.002) max.
1-389 note: use of nonchlorine activated fluxes is highly recommended. 240 d t = 115?, 0.3?/sec 0 d t = 100?, 1.5?/sec d t = 145?, 1?/sec time ?minutes temperature ?? 220 200 180 160 140 120 100 80 60 40 20 0 260 123 456789101112 solder reflow temperature profile (gull wing surface mount option parts) regulatory information the devices contained in this data sheet have been approved by the following organizations: ul recognized under ul 1577, component recognition program, file e55361. csa approved under csa component acceptance notice #5, file ca 88324. vde approved according to vde 0884/06.92 (HCNW4562 only). bsi certification according to bs415:1994 (bs en60065:1994); bs en60950:1992 (bs7002:1992) and en41003:1993 for class ii applications (HCNW4562 only).
1-390 insulation and safety related specifications 8-pin dip widebody (300 mil) (400 mil) parameter symbol value value units conditions minimum external l(101) 7.1 9.6 mm measured from input terminals to air gap (external output terminals, shortest distance clearance) through air. minimum external l(102) 7.4 10.0 mm measured from input terminals to tracking (external output terminals, shortest distance creepage) path along body. minimum internal 0.08 1.0 mm through insulation distance, plastic gap conductor to conductor, usually the (internal clearance) direct distance between the photo- emitter and photodetector inside the optocoupler cavity. minimum internal na 4.0 mm measured from input terminals to tracking (internal output terminals, along internal cavity. creepage) tracking resistance cti 200 200 volts din iec 112/vde 0303 part 1 (comparative tracking index) isolation group iiia iiia material group (din vde 0110, 1/89, table 1) option 300 - surface mount classification is class a in accordance with cecc 00802.
1-391 vde 0884 insulation related characteristics (HCNW4562 only) description symbol characteristic units installation classification per din vde 0110/1.89, table 1 for rated mains voltage 600 v rms i-iv for rated mains voltage 1000 v rms i-iii climatic classification 55/85/21 pollution degree (din vde 0110/1.89) 2 maximum working insulation voltage v iorm 1414 v peak input to output test voltage, method b* v iorm x 1.875 = v pr , 100% production test with t m = 1 sec, v pr 2652 v peak partial discharge < 5 pc input to output test voltage, method a* v iorm x 1.5 = v pr , type and sample test, v pr 2121 v peak t m = 60 sec, partial discharge < 5 pc highest allowable overvoltage* (transient overvoltage, t ini = 10 sec) v iotm 8000 v peak safety limiting values (maximum values allowed in the event of a failure, also see figure 17, thermal derating curve.) case temperature t s 150 c input current i s,input 400 ma output power p s,output 700 mw insulation resistance at t s , v io = 500 v r s 3 10 9 w *refer to the front of the optocoupler section of the current catalog, under product safety regulations section (vde 0884), for a detailed description. note: isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.
1-392 absolute maximum ratings parameter symbol device min. max. units note storage temperature t s -55 125 c operating temperature t a -40 85 c average forward input current i f(avg) hcpl-4562 12 ma HCNW4562 25 peak forward input current i f(peak) hcpl-4562 18.6 ma HCNW4562 40 effective input current i f(eff) hcpl-4562 12.9 ma rms reverse led input voltage (pin 3-2) v r hcpl-4562 1.8 v HCNW4562 3 input power dissipation p in HCNW4562 40 mw average output current (pin 6) i o(avg) 8ma peak output current (pin 6) i o(peak) 16 ma emitter-base reverse voltage (pin 5-7) v ebr 5v supply voltage (pin 8-5) v cc -0.3 30 v output voltage (pin 6-5) v o -0.3 20 v base current (pin 7) i b 5ma output power dissipation p o 100 mw 2 lead solder temperature t ls hcpl-4562 260 c HCNW4562 260 c reflow temperature profile t rp option 300 drawings section 1.6 mm below seating plane, 10 seconds up to seating plane, 10 seconds recommended operating conditions parameter symbol device min. max. units note operating temperature t a hcpl-4562 -10 70 c quiescent input current i fq hcpl-4562 6 ma HCNW4562 10 peak input current i f(peak) hcpl-4562 10 ma HCNW4562 17 see package outline
1-393 electrical specifications (dc) t a = 25 c, i f = 6 ma for hcpl-4562 and i f = 10 ma for HCNW4562 (i.e., recommended i fq ) unless otherwise specified. parameter symbol device min. typ.* max. units test conditions fig. note base photo i pb 13 31 65 m ai f = 10 ma v pb 3 5 v 2, 6 current hcpl-4562 19.2 i f = 6 ma i pb d i pb / -0.3 %/ c 2 ma < i f < 10 ma, 2 temperature d tv pb 3 5 v coefficient i pb hcpl-4562 0.25 % 2 ma < i f < 10 ma 2, 6 3 nonlinearity HCNW4562 0.15 6 ma < i f < 14 ma input forward v f hcpl-4562 1.1 1.3 1.6 v i f = 5 ma 5 voltage HCNW4562 1.2 1.6 1.8 i f = 10 ma input reverse bv r hcpl-4562 1.8 5 v i r = 10 m a breakdown HCNW4562 3 i r = 100 m a voltage transistor h fe 60 160 i c = 1 ma, current gain v ce = 1.25 v current ctr hcpl-4562 45 % v ce = 1.25 v, 8, 9 4 transfer ratio HCNW4562 52 v pb 3 5 v dc output v out hcpl-4562 4.25 v g v = 2, v cc = 9 v 4, voltage HCNW4562 5.0 15
1-394 small signal characteristics (ac) t a = 25 c, i f = 6 ma for hcpl-4562 and i f = 10 ma for HCNW4562 (i.e., recommended i fo ) unless otherwise specified. parameter symbol device min. typ.* max. units test conditions fig. note voltage gain g v hcpl-4562 0.8 2.0 4.2 v in = 1 v p-p 16 (0.1 mhz) HCNW4562 3.0 g v temperature d g v / d t -0.3 %/ cv in = 1 v p-p ,1, 11 coefficient f ref = 0.1 mhz base photo d i pb hcpl-4562 1.1 3.0 -db v in = 1 v p-p , 3, 10, current (6 mhz) HCNW4562 0.36 f ref = 0.1 mhz 12 variation -3 db frequency i pb hcpl-4562 6 15 mhz v in = 1 v p-p , 3, 10, 7 (i pb ) (-3 db) HCNW4562 13 f ref = 0.1 mhz 12 -3 db frequency g v hcpl-4562 6 17 mhz v in = 1 v p-p , 1, 11 7 (g v ) (-3 db) HCNW4562 9 f ref = 0.1 mhz gain variation d g v hcpl-4562 1.1 3.0 -db t a = 25 cv in = 1 v p-p , 1, 11 (6 mhz) HCNW4562 0.54 f ref = 0.1 mhz hcpl-4562 0.8 t a = -10 c 1.5 t a = 70 c d g v hcpl-4562 1.15 -db v in = 1 v p-p , (10 mhz) HCNW4562 2.27 f ref = 0.1 mhz differential hcpl-4562 1.0 % i fac = 0.7 ma p-p, 3, 7 8 gain at i fdc = 3 to 9 ma f = 3.58 mhz HCNW4562 0.9 i fac = 1 ma p-p, i fdc = 7 to 13 ma differential hcpl-4562 1 deg. i fac = 0.7 ma p-p, 3, 7 9 phase at i fdc = 3 to 9 ma f = 3.58 mhz HCNW4562 0.6 i fac = 1 ma p-p, i fdc = 7 to 13 ma total harmonic thd hcpl-4562 2.5 % v in = 1 v p-p ,410 distortion HCNW4562 0.75 f = 3.58 mhz, g v = 2 output noise v o (noise) 950 m v rms 10 hz to 10 mhz 1 voltage isolation mode imrr hcpl-4562 122 db f = 120 hz, g v = 2 14 11 rejection ratio HCNW4562 119
1-395 package characteristics all typicals at t a = 25 c parameter sym. device min. typ. max. units test conditions fig. note input-output v iso hcpl-4562 2500 v rms rh 50%, 5, 12 momentary HCNW4562 5000 t = 1 min., 5, 13 withstand hcpl-4562 5000 t a = 25 c 5, 13 voltage* (option 020) input-output r i-o hcpl-4562 10 12 w v i-o = 500 vdc 5 resistance HCNW4562 10 12 10 13 t a = 25 c 10 11 t a = 100 c input-output c i-o hcpl-4562 0.6 pf f = 1 mhz 5 capacitance HCNW4562 0.5 0.6 * the input-output momentary withstand voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. for the continuous voltage rating refer to the vde 0884 insulation related characteristics table (if applicable), your equipment level safety specification or hp application note 1074 entitled optocoupler input-output endurance voltage, publication number 5963-2203e. notes: 1. when used in the circuit of figure 1 or figure 4; g v = v out /v in ; i fq = 6 ma (hcpl-4562), i fq = 10 ma (HCNW4562). 2. derate linearly above 70 c free-air temperature at a rate of 2.0 mw/ c (hcpl-4562). 3. maximum variation from the best fit line of i pb vs. i f expressed as a percentage of the peak-to-peak full scale output. 4. current transfer ratio (ctr) is defined as the ratio of output collector current, i o , to the forward led input current, i f , times 100%. 5. device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together. 6. flat-band, small-signal voltage gain. 7. the frequency at which the gain is 3 db below the flat-band gain. 8. differential gain is the change in the small-signal gain of the optocoupler at 3.58 mhz as the bias level is varied over a given range. 9. differential phase is the change in the small-signal phase response of the optocoupler at 3.58 mhz as the bias level is varied over a given range. 10. total harmonic distortion (thd) is defined as the square root of the sum of the square of each harmonic distortion component. the thd of the isolated video circuit is measured using a 2.6 k w load in series with the 50 w input impedance of the spectrum analyzer. 11. isolation mode rejection ratio (imrr), a measure of the optocouplers ability to reject signals or noise that may exist between input and output terminals, is defined by 20 log 10 [(v out /v in )/(v out /v im )], where v im is the isolation mode voltage signal. 12. in accordance with ul 1577, each optocoupler is proof tested by applying an insulation test voltage 3 3000 v rms for 1 second (leakage detection current limit, i i-o 5 m a). this test is performed before the 100% production test shown in the vde 0884 insulation related characteristics table, if applicable. 13. in accordance with ul 1577, each optocoupler is proof tested by applying an insulation test voltage 3 6000 v rms for 1 second (leakage detection current limit, i i-o 5 m a). this test is performed before the 100% production test shown in the vde 0884 insulation related characteristics table, if applicable.
1-396 figure 1. gain and bandwidth test circuit. figure 2. base photo current test circuit. figure 3. base photo current frequency response test circuit. figure 4. recommended isolated video interface circuit. 162 w (hcpl-4562) 90.9 w (HCNW4562) 162 w (hcpl-4562) 90.9 w (HCNW4562)
1-397 figure 5. input current vs. forward voltage. figure 6. base photo current vs. input current. figure 7. small-signal response vs. input current. small-signal gain 0 0.92 i f ?input current ?ma 20 4 1 12 2 8 10 16 1.02 0.96 0.94 0.98 18 614 phase gain 1 2 0 -1 -2 -3 small-signal phase ?degrees normalized i f = 6 ma f = 3.58 mhz t a = 25 ? see fig. 3 HCNW4562 HCNW4562 hcpl-4562 HCNW4562 i f ?input forward voltage ?ma 1.0 0.01 v f ?forward voltage ?v 1.5 1.1 1.0 1.2 10 100 0.1 v f i f 1.3 hcpl-4562 1.4 + t a = 70 ? t a = 25 ? t a = -10 ? i pb ?base photo current ?? 0 0 i f ?input current ?ma 20 4 70 12 2 8 10 16 80 30 20 50 18 614 t a = 25 ? v pb > 5 v hcpl-4562 60 40 10
1-398 figure 8. current transfer ratio vs. temperature. figure 9. current transfer ratio vs. input current. figure 10. base photo current variation vs. bias conditions. HCNW4562 HCNW4562 HCNW4562 normalized current transfer ratio -10 0.86 t ?temperature ?? 70 10 1.02 40 0203050 1.04 0.94 0.92 0.98 60 hcpl-4562 1.00 0.96 0.88 normalized t a = 25 ? i f = 6.0 ma v ce = 1.25 v v pb > 5 v 0.90 ctr ?normalized current transfer ratio 0 0.50 i f ?input current ?ma 20 4 1.00 12 2 8 10 16 1.10 0.70 0.60 0.90 18 614 v ce = 5.0 v normalized t a = 25 ? i f = 6 ma v ce = 1.25 v v pb > 5 v 0.80 v ce = 1.25 v v ce = 0.4 v hcpl-4562 d i pb ?base photo current variation ?db 1 -2.7 i fq ?quiescent input current ?ma 12 3 -1.1 6 2457 -0.9 -1.9 -2.1 -1.5 8 hcpl-4562 -1.3 -1.7 -2.5 t a = 25 ? f ref = 0.1 mhz -2.3 91011 frequency = 6 mhz frequency = 10 mhz
1-399 figure 11. normalized voltage gain vs. frequency. figure 12. normalized base photo current vs. frequency. figure 13. phase vs. frequency. HCNW4562 HCNW4562 HCNW4562 ? ?phase ?degrees 0 -250 f ?frequency ?mhz 20 -25 6 24 0 -150 -175 -100 8 hcpl-4562 -75 -125 -225 video interface circuit phase see figure 4 -200 10 12 -50 14 16 18 t a = 25 ? i pb phase see figure 3 normalized base photo current ?db 0.01 -4.5 f ?frequency ?khz 100,000 0 10 0.1 1.0 0.5 -2.5 -3.0 -1.5 100 hcpl-4562 -1.0 -2.0 -4.0 normalized t a = 25 ? f = 0.1 mhz -3.5 1000 10,000 -0.5 normalized voltage gain ?db 0.01 -7 f ?frequency ?khz 100,000 2 10 0.1 1.0 3 -3 -4 -1 100 hcpl-4562 0 -2 -6 normalized t a = 25 ? f = 0.1 mhz -5 1000 10,000 t a = -10 ? t a = 70 ? 1 t a = 25 ?
1-400 figure 17. thermal derating curve, dependence of safety limiting value with case temperature per vde 0884. figure 14. isolation mode rejection ratio vs. frequency. figure 15. dc output voltage vs. transistor current gain. figure 16. output buffer stage for low impedance loads. i c q4 = 2 ma r 9 q 3 r 10 r 11 q 4 q 5 r 12 v out v cc low impedance load additional buffer stage HCNW4562 HCNW4562 output power ?p s , input current ?i s 0 0 t s ?case temperature ?? 175 1000 50 400 125 25 75 100 150 600 800 200 100 300 500 700 900 p s (mw) i s (ma) HCNW4562 imrr ?isolation mode rejection ratio ?db 0.01 0 f ?frequency ?khz 10,000 0.1 150 60 90 1.0 hcpl-4562 30 10 120 100 1000 t a = 25 ? -20 db/decade slope g v v out / v im imrr = 20 log 10 v o ?dc output voltage ?v 50 3.0 h fe ?transistor current gain 450 150 5.5 100 250 350 6.0 4.0 3.5 5.0 400 200 300 4.5 hcpl-4562
1-401 conversion from hcpl-4562 to HCNW4562 in order to obtain similar circuit performance when converting from the hcpl-4562 to the HCNW4562, it is recommended to increase the quiescent input current, i fq , from 6 ma to 10 ma. if the application circuit in figure 4 is used, then potentiometer r4 should be adjusted appropriately. design considerations of the application circuit the application circuit in figure 4 incorporates several features that help maximize the bandwidth performance of the hcpl-4562/HCNW4562. most important of these features is peaked response of the detector circuit that helps extend the frequency range over which the voltage gain is relatively constant. the number of gain stages, the overall circuit topology, and the choice of dc bias points are all consequences of the desire to maximize bandwidth performance. to use the circuit, first select r 1 to set v e for the desired led quiescent current by: v e g v v e r 10 i fq = CC @ CCCCCCCCCCCCC (1) r 4 ( ? i pb / ? i f ) r 7 r 9 for a constant value v inp-p , the circuit topology (adjusting the gain with r 4 ) preserves linearity by keeping the modulation factor (mf) dependent only on v e . i fp-p @ v in /r 4 (2) i fp-p i pbp-p v inp-p CCCC @ CCCCC = CCCCC (3) i fq i pbq v e modulation i f(p-p) v inp-p factor (mf): CCCCC = CCCCC (4) 2 i fq 2 v e for a given g v , v e , and v cc , dc output voltage will vary only with h fex . r 9 v o = v cc C v be C CCC [v bex C (i pbq C i bxq ) r 7 ] (5) r 10 where: g v v e r 10 i pbq @ CCCCCCCC (6) r 7 r 9 and, v cc C 2 v be i bxq @ CCCCCCCCCC (7) r 6 h fex figure 15 shows the dependency of the dc output voltage on h fex . for 9 v < v cc < 12 v, select the value of r 11 such that v o 4.25 v i cq4 @ CCC CCCCCC 9.0 ma (8) r 11 470 w the voltage gain of the second stage (q 3 ) is approximately equal to: r 9 1 CCC * CCCCCCCCCCCCCCCCCCCCCCCCC (9) r 10 1 1 + s r 9 c cq + CCCCCCCCC 2 p r 11 f t4 increasing r 11 (r 11 includes the parallel combination of r 11 and the load impedance) or reducing r 9 (keeping r 9 /r 10 ratio constant) will improve the bandwidth. if it is necessary to drive a low impedance load, bandwidth may also be preserved by adding an additional emitter following the buffer stage (q 5 in figure 16), in which case r 11 can be increased to set i cq4 @ 2 ma. finally, adjust r 4 to achieve the desired voltage gain. v out ? i pb r 7 r 9 g v @ CCCC @ CCCC CCCCCC (10) v in ? i f r 4 r 10 ? i pb where typically CCCC = 0.0032 ? i f definition: g v = voltage gain i fq = quiescent led forward current i fp-p = peak-to-peak small signal led forward current v inp-p = peak-to-peak small signal input voltage i pbp-p = peak-to-peak small signal base photo current i pbq = quiescent base photo current v bex = base-emitter voltage of hcpl-4562/ HCNW4562 transistor i bxq = quiescent base current of hcpl-4562/ HCNW4562 transistor h fex = current gain (i c /i b ) of hcpl-4562/ HCNW4562 transistor v e = voltage across emitter degeneration resistor r 4 f t = unity gain frequency of q 5 c cq = effective capacitance from collector of q 3 to ground p-p 4 (p-p) p-p p-p p-p p-p q4 3 4 4 3


▲Up To Search▲   

 
Price & Availability of HCNW4562

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X